On the Construction of point processes for classical and quantum gases

Benjamin Nehring Institut für Mathematik der Universität Potsdam, Am Neuen Palais 10, D-14469 Potsdam email: bnehring@uni-potsdam.de

Hans Zessin Fakultät für Mathematik der Universität Bielefeld Postfach 10 01 31, D-33601 Bielefeld email: zessin@math.uni-bielefeld.de

May 10, 2011

Abstract

We propose a new construction of point processes P with a Laplace transform of the form $\exp(-L(1-\zeta_f)), f \in \mathcal{K}(X)$, where L is a signed modified Laplace functional (s.m.L.f.) in the sense of Mecke [3]. In case that L is of first order P is the unique solution of the equation $C_P = C_L \star P$. The case where L is a positive m.L.F. is well known. P then is infinitely divisible with Lévy measure L and describes for example Bosons or Pôlya sum processes. We are mainly interested in the case of signed m.L.f. L which lead to Fermions, Pôlya difference and other immanantal processes. We show that a large class of Papangelou processes belongs to these processes. Other constructions may by found in the foundational work of Soshnikov [10] and Shirai/Takahashi [9].

1 Notations and problems

Let $(X, \mathcal{B}, \mathcal{B}_0)$ be a Polish *phase space*, i.e. X is a Polish space, \mathcal{B} its Borel σ -field and \mathcal{B}_0 the collection of its bounded Borel sets. On the next level we consider the sets $\mathcal{M}^{\cdot} \subset \mathcal{M}^{\cdot \cdot} \subset \mathcal{M}$ of Radon resp. (simple) Radon point measures μ on X. $\mathcal{M} = \mathcal{M}(X)$ is a nice phase space $(\mathcal{M}, \mathcal{B}(\mathcal{M}), \mathcal{B}_0(\mathcal{M}))$ with respect to the vague topology in \mathcal{M} , and $\mathcal{M}^{\cdot}, \mathcal{M}^{\cdot \cdot} \in \mathcal{B}(\mathcal{M})$. By \mathcal{M}_f^{\cdot} we denote the set of finite point measures. On the third level we consider laws P on $\mathcal{M}^{\cdot}, \mathcal{M}^{\cdot \cdot}$ and \mathcal{M} , which are called (simple) point processes in resp. random measures on X. Denoting $\zeta_f : \mu \mapsto \mu(f), f \in \mathcal{K}(X)$, we are interested in the random fields $(\mathcal{M}, \mathcal{B}(\mathcal{M}), P, (\zeta_f)_{f \in \mathcal{K}(X)})$. (Here $\mathcal{K}(X)$ denotes the collection of continuous functions with compact support.)

Starting point for the main concept is a kernel $\pi(\mu, \mathrm{d} x), \mu \in \mathcal{M}^{\cdot}$, from \mathcal{M}^{\cdot} to X. (I.e. $\pi(\mu, .) \in \mathcal{M}$ for any $\mu \in \mathcal{M}^{\cdot}$; and $\pi(., f)$ is measurable for any $f \in \mathcal{K}(X)$.) Then a point process P in X is called a Papangelou process with $conditional\ intensity\ \pi$ if P is a solution of the following integration-by-parts formula

$$(\Sigma_{\pi}) \quad \mathcal{C}_{P}(h) = \int \int h(x, \mu + \delta_{x}) \, \pi(\mu, \mathrm{d} \, x) P(\mathrm{d} \, \mu), h \in F_{+}.$$

(Here C_P is the Campbell measure of P and F_+ the collection of non-negative measurable functions on the underlying space.)

 π is a conditional intensity for P in the sense that $P(\pi(., f)) = P(\zeta_f), f \in \mathcal{K}(X)$, where the right hand side is given by the intensity of P. Equation (Σ_{π}) may have no solution, exactly one or a continuum of solutions.

Example 1 Let $\varrho \in \mathcal{M}, z > 0$. (z may depend on x.)

- 1 (The Poisson process) Take $\pi(\mu, .) = \varrho$. (Σ_{π}) then is Mecke's equation having P_{ϱ} the Poisson process with (conditional) intensity ϱ as unique solution.
- 2 Take $\pi(\mu, .) = 1_{\{0\}}(\mu) \cdot \varrho$.
- 3 (The Polya sum process [6]) Take $\pi_+(\mu, .) = z \cdot (\varrho + \mu)$. The unique solution then is the Polya sum process for π_+ .
- 4 (The Polya difference process [6]) Here the underlying space X is countable and ϱ is the counting measure on X. Take $\pi_{-}(\mu, .) = z \cdot (\varrho - \mu)$ if μ is simple, i.e. $\mu \in \mathcal{M}$, and $\equiv 0$ otherwise. The unique solution now is the Polya difference process. It is a simple point process.
- 5 (Gibbs processes [4]) Take $\gamma(\mu, dx) = \exp(-E(x, \mu)) \cdot \varrho(dx)$ where $E(x, \mu)$ is a suitable energy of x given μ . The solutions of (Σ_{γ}) are the Gibbs states in the DLR-sense.

The Problem to be discussed in this paper is the construction of such Papangelou processes, but also certain immanantal processes, and to indicate their characteristic properties.

2 Finite Papangelou processes

Given π , a natural number $m \ge 0$ and a configuration $\mu \in \mathcal{M}^{\cdot \cdot}$. Consider the kernel on X^m defined by

 $\pi^{(m)}(\mu; \operatorname{d} x_1 \dots \operatorname{d} x_m) = \pi(\mu; \operatorname{d} x_1) \pi(\mu + \delta_{x_1}, \operatorname{d} x_2) \dots \pi(\mu + \delta_{x_1} + \dots + \delta_{x_{m-1}}, \operatorname{d} x_m),$

with $\pi^{(0)} = \delta_{\emptyset}$.

Assume now the following *finiteness condition*:

(1)
$$0 < \Xi(\mu) = \sum_{m \ge 1} \frac{1}{m!} \pi^{(m)}(\mu, X^m) < \infty.$$

In this case the following finite point process is well defined:

$$P_{\pi}^{(\mu)}(\varphi) = \frac{1}{\Xi(\mu)} \sum_{m \ge 1} \frac{1}{m!} \int_{X^m} \varphi(\delta_{x_1} + \dots + \delta_{x_m}) \pi^{(m)}(\mu, \mathrm{d}\, x_1 \dots \mathrm{d}\, x_m), \varphi \in F_+.$$

Under the additional cocycle condition

 $\pi^{(m)}, m \ge 0$, are all symmetric measures

we then have the

Lemma 1 ([6]) $P_{\pi}^{(\mu)}$ is a solution Q of the equation

$$\mathcal{C}_Q(h) = \int \int h(x, \eta + \delta_x) \, \pi(\eta + \mu, \mathrm{d}\, x) Q(\mathrm{d}\, \eta), h \in F_+$$

(For a proof we refer to [6].)

In particular we see that $P_{\pi}^{(0)}$ is a (finite) Papangelou process for π . We remark that this theorem remains true in a more general context and allows the construction of *locally finite* Papangelou processes. For this one has to assume the cocycle condition and local integrability or local finiteness of the kernel (to be defined below). (cf. [6]) We now sketch a new construction also based on these assumptions on a given kernel π .

3 A new construction of point processes

Let $\pi(\mu, \mathrm{d} x), \mu \in \mathcal{M}^{\cdot \cdot}$, be a given kernel, locally integrable and satisfying the cocycle condition. $G \in \mathcal{B}_0$ denotes bounded Borel sets in X. And $\pi_G = 1_G \cdot \pi$ the restriction of π to G. Let Q_G be the finite Papangelou process $P_{\pi_G}^{(0)}$, i.e.

$$Q_G(\varphi) = \frac{1}{\Xi_G} \cdot \sum_{m \ge 0} \frac{1}{m!} \cdot \int_{G^m} \varphi(\delta_{x_1} + \dots + \delta_{x_m}) \, \varrho_m(\mathrm{d}\, x_1 \dots \mathrm{d}\, x_m), \varphi \in \mathcal{M}_f^{\cdot},$$

where we wrote $\rho_m(\mathrm{d} x_1 \ldots \mathrm{d} x_m) = \pi^{(m)}(0; \mathrm{d} x_1 \ldots \mathrm{d} x_m)$ for short. Here we use local integrability of π , i.e. finiteness of the normalizing constants Ξ_G . Note that the measures ρ_k are symmetric.

The Laplace transform of Q_G is

$$\mathcal{L}_{Q_G}(f) = \frac{1}{\Xi_G} \cdot \sum_{m \ge 0} \frac{1}{m!} \cdot \int_{G^m} \prod_{j=1}^m e^{-f(x_j)} \varrho_m(\mathrm{d}\, x_1 \dots \mathrm{d}\, x_m), f \in \mathcal{K}(G).$$

The aim now is to construct some point process Q as the weak limit of the sequence $(Q_G)_{G \in \mathcal{B}_0}$. Define the (generalized) cummulant measures Θ_m of $(\varrho_m)_m$ by

(2)
$$\Theta_m(f_1 \otimes \cdots \otimes f_m) = \frac{1}{(m-1)!} \sum_{\mathcal{J}} c(\mathcal{J}) \cdot \prod_{J \in \mathcal{J}} \varrho_{|J|}(\otimes_{j \in J} f_j).$$

 $(f_1, \ldots, f_m \in \mathcal{K}(X))$ Here the sum is taken over all partitions of $\{1, \ldots, m\}$ into pairwise disjoint non-empty subsets; and $c(\mathcal{J}) = (-1)^{|\mathcal{J}|-1}(|\mathcal{J}|-1)!$. Then define the corresponding *cluster measure* L on \mathcal{M}_f^c by

$$L(\varphi) = \sum_{m \ge 1} \frac{1}{m} \int_{X^m} \varphi(\delta_{x_1} + \dots + \delta_{x_m}) \, \Theta_m(\mathrm{d}\, x_1 \dots \mathrm{d}\, x_m), \varphi \in F_+.$$

We assume here that L is a signed modified Laplace functional (s.m.L.f.) in the sense of Mecke ([3]), i.e. |L| is a Radon measure in the sense that it is finite on all $\mathcal{M}_G^{:} = \{\zeta_G \geq 1\}, G \in \mathcal{B}_0$, and moreover

(3)
$$|L|(1 - e^{-\zeta_f}) < -\infty, f \in \mathcal{K}(X).$$

Note that this is a condition on the kernel π . A sufficient condition for this to happen is that L is of first order, i.e. the intensity measure $\nu_{|L|}^1$ of |L| is Radon. Then for any $G \in \mathcal{B}_0$ $|L_G|$ is a finite measure with

$$|L_G|(1 - \mathrm{e}^{-\zeta_f}) < \infty, f \in \mathcal{K}(X).$$

Here L_G denotes the restriction of L to $\mathcal{M}_f^{::}(G)$.

A combinatorial argument then shows that

(4)
$$\mathcal{L}_{Q_G}(f) = \exp\left(-L_G(1 - e^{-\zeta_f})\right), f \in \mathcal{K}(X).$$

This step resembles the well known problem in statistical mechanics to represent the log-partition function by means of the Ursell functions (or cummulants in probability theory).

We now go to the thermodynamic limit $G \nearrow X$ in (4) and can see by means of Lebesgue's dominated convergence theorem that the limiting function $\mathcal{L}(f) = \exp\left(-L(1-\mathrm{e}^{-\zeta_f})\right) f \in \mathcal{K}(X)$, satisfies all conditions of Levy's continuity theorem for random measures (cf. [3]). Thus we see that there exists some point process P in X such that $P_G \Rightarrow_G P$. Here \Rightarrow denotes weak convergence. Its Laplace transform is given by

(5)
$$\mathcal{L}_P(f) = \exp\left(-L(1 - e^{-\zeta_f})\right), f \in \mathcal{K}(X).$$

Note here that the class of point processes is closed in the weak topology. To summarize the above reasoning we obtained the following

Theorem 1 (cf. [5]) Let π be locally integrable and satisfy the cocycle condition. We assume also that the associated L is a s.m.L.f.. Then there exists a unique point process P in X with a Laplace transform of the form (5).

If L is a signed modified Laplace functional of first order, then equation (5) for a random measure P is equivalent to the condition that P is a solution of the following equation :

(6)
$$C_P = C_L \star P$$

Here the operation \star is a version of a convolution defined by

$$\mathcal{C}_L \star P(h) = \int h(x, \kappa + \mu) \ \mathcal{C}_L(\mathrm{d}\, x, \mathrm{d}\, \kappa) P(\mathrm{d}\, \mu), h \in F_+$$

(For a proof see [3, 7].) This equation is well known in the case that L is a positive measure on \mathcal{M}_f^{\cdot} satisfying condition (3). P is then infinitely divisible with socalled Lévy measure L; and P can the represented as the image of the Poisson process with intensity measure L under the transformation which

dissolves the clusters into its particles. (cf. [3]) In case of a signed measure L the above construction seems to be new.

If we assume in addition to the conditions above that π is a Feller kernel in the sense that $\pi(., f)$ is a continuous and bounded function for any $f \in \mathcal{K}(X)$ then the theorem, combined with the generalized Palm-Chinchin theorem, implies that P is even a Papangelou process with conditional intensity π .

If L is simple, i.e. concentrated on \mathcal{M}_{f}^{\cdot} , with diffuse first moment measure then P is simple too. ([5])

It is evident from the above reasoning that one can start with a family of signed measures $(\Theta_m)_m$ on X^m such that the corresponding L is a s.m.L.f, and define the measures $(\varrho_k)_k$ by means of the inversion of formula (2):

(7)
$$\varrho_k(f_1 \otimes \dots f_k) = \sum_{\sigma \in \mathcal{S}_k} \prod_{\omega \in \sigma} \Theta_{|\omega|}(\otimes_{j \in \omega} f_j).$$

If these measures are all positive then the assertions of the theorem remain valid.

4 Bosons, Fermions, Polya and immanantal processes

Poisson and other point processes

Given a Radon measure ρ on X the kernel $\pi(\mu, .) \equiv \rho$ leads to $\rho_m = \rho^{\otimes m}$ and the Poisson process $Q_G = P_{\rho_G}$ in $\mathcal{M}^{\cdot \cdot}(G)$. Furthermore, $\Theta_1 = \rho$ whereas all other Θ_m are the zero measure. Therefore L is the non-signed m.L.f. $L(\varphi) = \int_X \varphi(\delta_x) \rho(dx), \varphi \in F_+$. The above construction immediately leads to P_{ρ} , the Poisson process with intensity measure ρ .

Consider one of the simplest Gibbs resp. Boltzmann kernels $\pi(\mu, .) = 1_{\{0\}}(\mu) \cdot \varrho$, where we now assume that $0 < \varrho(X) < 1$. In this case $\varrho_1 = \varrho$ and all other ϱ_k are the zero measure. The corresponding point process is $Q_G = \frac{1}{\Xi_G} \cdot (\delta_0 + \int_G \delta_{\delta_x} \varrho(dx))$. For L we then find the signed m.L.f.

$$L(\varphi) = \sum_{m \ge 1} \frac{(-1)^{m-1}}{m} \int_{X^m} \varphi(\delta_{x_1} + \dots + \delta_{x_m}) \,\varrho(\mathrm{d}\, x_1) \dots \,\varrho(\mathrm{d}\, x_m).$$

And the corresponding simple point process is Q_X .

Polya processes

Let ρ be a Radon measure on X and 0 < z < 1 a given parameter. Consider the kernel $\pi_{+1}(\mu, .) = z \cdot (\rho + \mu)$. Simultaneously consider also $\pi_{-1}(\mu, .) = z \cdot (\rho - \mu) \cdot 1_{[0,\rho]}(\mu)$. Here $[0,\rho]$ is the collection of all Radon point measures κ which are subconfigurations of ρ . (We assume here that $[0,\rho] \neq \emptyset$.) A special case was presented in example 4 above. The kernels $\pi_{\varepsilon}, \varepsilon \in \{+1, -1\}$, are locally integrable and satisfy the cocycle condition. The measures ϱ_k^{ε} resp. Θ_m^{ε} are given by

$$\varrho_k^{\varepsilon}(\mathrm{d}\,x_1\dots\mathrm{d}\,x_k) = z^k \cdot \mathbf{1}_{[0,\varrho]}^{\varepsilon}(\delta_{x_1}+\dots+\delta_{x_{k-1}}) \cdot \varrho(\mathrm{d}\,x_1)(\varrho+\varepsilon\delta_{x_1})(\mathrm{d}\,x_2) \\ \cdots (\varrho+\varepsilon(\delta_{x_1}+\dots+\delta_{x_{k-1}}))(\mathrm{d}\,x_k), \\ \Theta_m^{\varepsilon}(\mathrm{d}\,x_1\dots\mathrm{d}\,x_m) = z^m \cdot \varepsilon^{m-1} \cdot \delta_{x_m}(\mathrm{d}\,x_1)\cdots \delta_{x_m}(\mathrm{d}\,x_{m-1})\varrho(\mathrm{d}\,x_m).$$

Here 1^{ε} denotes the usual indicator function if $\varepsilon = -1$; otherwise it is the constant 1. The corresponding point process P_{ε} is called Polya sum process if $\varepsilon = +1$ and Polya difference process otherwise. They had been analyzed in [8, 6]. P_{ε} is a Papangelou process for π_{ε} . P_{-1} is simple.

A class of Gibbs processes for classical systems

Consider a Boltzmann kernel of the form $\pi(\mu, \mathrm{d} x) = \exp\left(-E(x|\mu)\right)\varrho(\mathrm{d} x)$, where $E(x|\mu)$ is the energy of the particle in x given the environment μ defined by some pair potential Φ . In case that this potential is bounded from below, continuous, symmetric and with finite range then π is a Feller kernel. If it has additional properties implying that the corresponding L is a signed m.L.f. then by theorem 1 there exists a unique Gibbs process P with Boltzmann kernel π . It would be interesting to work out which class of pair potentials has these kernel properties.

The ideal Bose and Fermi gas

Another important class of examples is obtained as follows: The underlying phase space now is \mathbb{R}^d with the Lebesgue measure dx. Again 0 < z < 1 is a parameter and

$$g(x) = \frac{1}{(2\pi\beta)^{d/2}} \exp\left(-\frac{\|x\|^2}{2\beta}\right), x \in \mathbb{R}^d,$$

the centered Gaußian density with covariance matrix βI , I denoting the identity and $\beta > 0$ a given parameter. Consider the kernel K(x, y) = g(x-y) and denote by \wp the coarsest resp. finest partition of $\{1, \ldots, k\}$. Define the measures

$$\varrho_k^{\wp}(\mathrm{d}\,x_1\ldots\mathrm{d}\,x_k) = z^k \sum_{\sigma\in\mathcal{S}_k} \chi^{\wp}(\sigma) \prod_{j=1}^k K(x_j,x_{\sigma(j)}) \,\mathrm{d}\,x_1\ldots\mathrm{d}\,x_k,$$

which are in 1 - 1-correspondence with the cumulant measures

$$\Theta_m^{\wp}(\mathrm{d}\,x_1\ldots\mathrm{d}\,x_m)=z^m\chi^{\wp}(e)\cdot K(x_1,x_2)\cdots K(x_m,x_1)\ \mathrm{d}\,x_1\ldots\mathrm{d}\,x_m.$$

Here e denotes the identity permutation in S_m , and χ^{\wp} is the character of the corresponding irreducible representation of S_k resp. S_m . In both cases the ϱ_k are positive, symmetric Radon measures on X^k . Thus we can construct locally the corresponding point processes $Q_G, G \in \mathcal{B}_0$.

Denote the corresponding cluster measure by L^{\wp} . Its Campbell measure $\mathcal{C}_{L^{\wp}}$ is the image of $\mathcal{K}^x(\mathrm{d}\, y)\varrho(\mathrm{d}\, x)$ under the mapping $(y, x) \longmapsto (x, \mu_y + \delta_x)$, where μ_y is the configuration built on the tupel y. Here $\mathcal{K}^x = \sum_{m \ge 1} K_m^x$ is a measure on $\mathbf{X} = \bigcup_{n \ge 0} X^n$ where

$$K_m^x(\mathrm{d}\,x_2\ldots\mathrm{d}\,x_m)=z^m\chi^\wp(e)\cdot K(x,x_2)\cdots K(x_m,x)\,\,\mathrm{d}\,x_2\ldots\mathrm{d}\,x_m.$$

This implies that the intensity measure of $|L^{\wp}|$ is $\mathcal{K}^{x}(\mathbf{X}) \, \mathrm{d} \mathbf{x}$. This is a Radon measure because $\int_{X} K(x, y) K(y, z) \, \mathrm{d} y = K(x, z), x, z \in X$. In this case L^{\wp} is a s.m.L.f of first order and theorem 1 implies the existence of a point process P_{\wp} in X. We call it the *immanantal process for* \wp and K. This process is a solution of equation (6) for L_{\wp} . Both processes are simple because their cluster measures have this property.

Fichtner (cf.[2]) considered the case where \wp is the coarsest partition, i.e. $\chi^{\wp} \equiv 1$. The corresponding point process P_+ is infinitely divisible with Lévy measure $L^{\chi^{\wp}}$ and a solution of equation (6). It is called in [2] the *ideal Bose gas.* In this case $\varrho_k^{\wp} (dx_1 \dots dx_k) = z^k \operatorname{per} (K(x_i, x_j))_{1 \leq i,j \leq k} dx_1 \dots dx_k$, the *permanent* of the matrix in question.

When \wp is the finest partition then χ^{\wp} is the *signum* of a permutation, and $\varrho_k (dx_1 \dots dx_k) = z^k \det (K(x_i, x_j))_{1 \le i,j \le k} dx_1 \dots dx_k$. This simple point process is called the *ideal Fermion gas*.

This class can be broadend considerably to *immanantal point processes* in the sense of [1] in considering also all other characters χ^{\wp} and a wider class of kernels K over abstract σ -finite measure spaces.

References

- Diaconis, P., Evans, S., Immanants and finite point processes. J. Combinatorial theory A, 91, 305-321 (2000).
- [2] Fichtner, K.-H.: On the position distribution if the ideal Bose gas. Math. nachr. 151, 59-67 (1991).
- [3] Mecke, J.: Random measures. In German. Unpublished Habilitation (1967). English version in preparation (2011).
- [4] Nguyen, X.X., Zessin H.: Integral and differential characterizations of the Gibbs process. Math. Nachr. 88, 1055-115 (1979).
- [5] Nehring, B.: On the structure of the moment measures of random measures with signed modified Laplace functionals. Thesis. In preparation.
- [6] Nehring, B., Zessin, H.: The Papangelou process. A concept for Gibbs, Fermi and Bose processes. To appear in Izvestiya Nan Armenii: Matematika.
- [7] Nehring, B., Zessin, H.: A representation of the moment measures of the general ideal Bose gas. To appear in Math. Nachr. (2011).
- [8] Rafler, M.: Gaussian Loop- and Polya Processes. A Point Process Approach. Universitätsverlag Potsdam (2009).
- [9] Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: Fermion, Poisson and boson processes. J. Functional Anal. 205, 414-463 (2003).
- [10] Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923-975 (2000).