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Abstract

We propose a new construction of point processes P with a Laplace
transform of the form exp

(
− L(1 − ζf )

)
, f ∈ K(X), where L is a signed

modified Laplace functional (s.m.L.f.) in the sense of Mecke [3]. In case
that L is of first order P is the unique solution of the equation CP =
CL ? P . The case where L is a positive m.L.F. is well known. P then is
infinitely divisible with Lévy measure L and describes for example Bosons
or Pôlya sum processes. We are mainly interested in the case of signed
m.L.f. L which lead to Fermions, Pôlya difference and other immanantal
processes. We show that a large class of Papangelou processes belongs to
these processes. Other constructions may by found in the foundational
work of Soshnikov [10] and Shirai/Takahashi [9].

1 Notations and problems

Let (X,B,B0) be a Polish phase space, i.e. X is a Polish space, B its Borel
σ−field and B0 the collection of its bounded Borel sets. On the next level we
consider the setsM. ⊂M·· ⊂M of Radon resp. (simple) Radon point measures
µ on X. M =M(X) is a nice phase space (M,B(M),B0(M)) with respect to
the vague topology in M, and M.,M·· ∈ B(M). By M··f we denote the set of
finite point measures. On the third level we consider laws P on M.,M·· and
M, which are called (simple) point processes in resp. random measures on X.
Denoting ζf : µ 7−→ µ(f), f ∈ K(X), we are interested in the random fields
(M,B(M), P, (ζf )f∈K(X)). (Here K(X) denotes the collection of continuous
functions with compact support.)

Starting point for the main concept is a kernel π(µ,dx), µ ∈M··, from M··
to X. (I.e. π(µ, .) ∈ M for any µ ∈ M··; and π(., f) is measurable for any
f ∈ K(X).) Then a point process P in X is called a Papangelou process with
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conditional intensity π if P is a solution of the following integration-by-parts
formula

(Σπ) CP (h) =

∫ ∫
h(x, µ+ δx)π(µ,dx)P (dµ), h ∈ F+.

(Here CP is the Campbell measure of P and F+ the collection of non-negative
measurable functions on the underlying space.)

π is a conditional intensity for P in the sense that P (π(., f)) = P (ζf ), f ∈
K(X), where the right hand side is given by the intensity of P . Equation (Σπ)
may have no solution, exactly one or a continuum of solutions.

Example 1 Let % ∈M, z > 0. (z may depend on x.)

1 (The Poisson process ) Take π(µ, .) = %. (Σπ) then is Mecke’s equation
having P% the Poisson process with (conditional) intensity % as unique
solution.

2 Take π(µ, .) = 1{0}(µ) · %.

3 (The Polya sum process [6]) Take π+(µ, .) = z · (% + µ). The unique
solution then is the Polya sum process for π+.

4 (The Polya difference process [6]) Here the underlying space X is countable
and % is the counting measure on X. Take π−(µ, .) = z · (% − µ) if µ is
simple, i.e. µ ∈ M., and ≡ 0 otherwise. The unique solution now is the
Polya difference process. It is a simple point process.

5 (Gibbs processes [4]) Take γ(µ,dx) = exp
(
−E(x, µ)

)
·%(dx) where E(x, µ)

is a suitable energy of x given µ. The solutions of (Σγ) are the Gibbs states
in the DLR-sense.

The Problem to be discussed in this paper is the construction of such
Papangelou processes, but also certain immanantal processes, and to indicate
their characteristic properties.

2 Finite Papangelou processes

Given π, a natural number m ≥ 0 and a configuration µ ∈ M··. Consider the
kernel on Xm defined by

π(m)(µ; dx1 . . . dxm) = π(µ; dx1)π(µ+δx1
,dx2) . . . π(µ+δx1

+· · ·+δxm−1
,dxm),

with π(0) = δ∅.
Assume now the following finiteness condition:

(1) 0 < Ξ(µ) =
∑
m≥1

1

m!
π(m)(µ,Xm) <∞.

In this case the following finite point process is well defined:

P (µ)
π (ϕ) =

1

Ξ(µ)

∑
m≥1

1

m!

∫
Xm

ϕ(δx1 + · · ·+ δxm)π(m)(µ,dx1 . . . dxm), ϕ ∈ F+.
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Under the additional cocycle condition

π(m),m ≥ 0, are all symmetric measures

we then have the

Lemma 1 ([6]) P
(µ)
π is a solution Q of the equation

CQ(h) =

∫ ∫
h(x, η + δx)π(η + µ,dx)Q(d η), h ∈ F+.

(For a proof we refer to [6].)

In particular we see that P
(0)
π is a (finite) Papangelou process for π. We

remark that this theorem remains true in a more general context and allows the
construction of locally finite Papangelou processes. For this one has to assume
the cocycle condition and local integrability or local finiteness of the kernel (to
be defined below). (cf. [6]) We now sketch a new construction also based on
these assumptions on a given kernel π.

3 A new construction of point processes

Let π(µ,dx), µ ∈ M··, be a given kernel, locally integrable and satisfying the
cocycle condition. G ∈ B0 denotes bounded Borel sets in X. And πG = 1G · π
the restriction of π to G. Let QG be the finite Papangelou process P

(0)
πG , i.e.

QG(ϕ) =
1

ΞG
·
∑
m≥0

1

m!
·
∫
Gm

ϕ(δx1
+ · · ·+ δxm

) %m(dx1 . . . dxm), ϕ ∈M..
f ,

where we wrote %m(dx1 . . . dxm) = π(m)(0; dx1 . . . dxm) for short. Here we use
local integrability of π, i.e. finiteness of the normalizing constants ΞG. Note
that the measures %k are symmetric.

The Laplace transform of QG is

LQG
(f) =

1

ΞG
·
∑
m≥0

1

m!
·
∫
Gm

m∏
j=1

e−f(xj) %m(dx1 . . . dxm), f ∈ K(G).

The aim now is to construct some point process Q as the weak limit of
the sequence (QG)G∈B0

. Define the (generalized) cummulant measures Θm of
(%m)m by

(2) Θm(f1 ⊗ · · · ⊗ fm) =
1

(m− 1)!

∑
J
c(J ) ·

∏
J∈J

%|J|(⊗j∈Jfj).

(f1, . . . , fm ∈ K(X).) Here the sum is taken over all partitions of {1, . . . ,m}
into pairwise disjoint non-empty subsets; and c(J ) = (−1)|J |−1(|J |−1)!. Then
define the corresponding cluster measure L on M··f by

L(ϕ) =
∑
m≥1

1

m

∫
Xm

ϕ(δx1 + · · ·+ δxm) Θm(dx1 . . . dxm), ϕ ∈ F+.
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We assume here that L is a signed modified Laplace functional (s.m.L.f.) in the
sense of Mecke ([3]), i.e. |L| is a Radon measure in the sense that it is finite on
all M··G = {ζG ≥ 1}, G ∈ B0, and moreover

(3) |L|(1− e−ζf ) < −∞, f ∈ K(X).

Note that this is a condition on the kernel π. A sufficient condition for this to
happen is that L is of first order, i.e. the intensity measure ν1

|L| of |L| is Radon.

Then for any G ∈ B0 |LG| is a finite measure with

|LG|(1− e−ζf ) <∞, f ∈ K(X).

Here LG denotes the restriction of L to M··f (G).
A combinatorial argument then shows that

(4) LQG
(f) = exp

(
− LG(1− e−ζf )

)
, f ∈ K(X).

This step resembles the well known problem in statistical mechanics to repre-
sent the log-partition function by means of the Ursell functions (or cummulants
in probability theory).

We now go to the thermodynamic limit G ↗ X in (4) and can see by
means of Lebesgue’s dominated convergence theorem that the limiting function
L(f) = exp

(
−L(1−e−ζf )

)
f ∈ K(X), satisfies all conditions of Levy’s continuity

theorem for random measures (cf. [3]). Thus we see that there exists some point
process P in X such that PG ⇒G P . Here ⇒ denotes weak convergence. Its
Laplace transform is given by

(5) LP (f) = exp
(
− L(1− e−ζf )

)
, f ∈ K(X).

Note here that the class of point processes is closed in the weak topology.
To summarize the above reasoning we obtained the following

Theorem 1 (cf. [5]) Let π be locally integrable and satisfy the cocycle condi-
tion. We assume also that the associated L is a s.m.L.f.. Then there exists a
unique point process P in X with a Laplace transform of the form (5).

If L is a signed modified Laplace functional of first order, then equation (5)
for a random measure P is equivalent to the condition that P is a solution of
the following equation :

(6) CP = CL ? P.

Here the operation ? is a version of a convolution defined by

CL ? P (h) =

∫
h(x, κ+ µ) CL(dx, dκ)P (dµ), h ∈ F+.

(For a proof see [3, 7].) This equation is well known in the case that L is a
positive measure on M··f satisfying condition (3). P is then infinitely divisible
with socalled Lévy measure L; and P can the represented as the image of
the Poisson process with intensity measure L under the transformation which
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dissolves the clusters into its particles. (cf. [3]) In case of a signed measure L
the above construction seems to be new.

If we assume in addition to the conditions above that π is a Feller kernel
in the sense that π(., f) is a continuous and bounded function for any f ∈
K(X) then the theorem, combined with the generalized Palm-Chinchin theorem,
implies that P is even a Papangelou process with conditional intensity π.

If L is simple, i.e. concentrated on M·f , with diffuse first moment measure
then P is simple too. ([5])

It is evident from the above reasoning that one can start with a family of
signed measures (Θm)m on Xm such that the corresponding L is a s.m.L.f, and
define the measures (%k)k by means of the inversion of formula (2):

(7) %k(f1 ⊗ . . . fk) =
∑
σ∈Sk

∏
ω∈σ

Θ|ω|(⊗j∈ωfj).

If these measures are all positive then the assertions of the theorem remain
valid.

4 Bosons, Fermions, Polya and immanantal pro-
cesses

Poisson and other point processes

Given a Radon measure % on X the kernel π(µ, .) ≡ % leads to %m = %⊗m and
the Poisson process QG = P%G in M··(G). Furthermore, Θ1 = % whereas all
other Θm are the zero measure. Therefore L is the non-signed m.L.f. L(ϕ) =∫
X
ϕ(δx) %(dx), ϕ ∈ F+. The above construction immediately leads to P%, the

Poisson process with intensity measure %.
Consider one of the simplest Gibbs resp. Boltzmann kernels π(µ, .) =

1{0}(µ) · %, where we now assume that 0 < %(X) < 1. In this case %1 = %
and all other %k are the zero measure. The corresponding point process is
QG = 1

ΞG
·
(
δ0 +

∫
G
δδx %(dx)

)
. For L we then find the signed m.L.f.

L(ϕ) =
∑
m≥1

(−1)m−1

m

∫
Xm

ϕ(δx1
+ · · ·+ δxm

) %(dx1) . . . %(dxm).

And the corresponding simple point process is QX .

Polya processes

Let % be a Radon measure on X and 0 < z < 1 a given parameter. Consider
the kernel π+1(µ, .) = z · (% + µ). Simultaneously consider also π−1(µ, .) =
z · (%− µ) · 1[0,%](µ). Here [0, %] is the collection of all Radon point measures κ
which are subconfigurations of %. (We assume here that [0, %] 6= ∅.) A special
case was presented in example 4 above.
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The kernels πε, ε ∈ {+1,−1}, are locally integrable and satisfy the cocycle
condition. The measures %εk resp. Θε

m are given by

%εk(dx1 . . . dxk) = zk · 1ε[0,%]
(
δx1

+ · · ·+ δxk−1

)
· %(dx1)

(
%+ εδx1

)
(dx2)

· · ·
(
%+ ε(δx1 + · · ·+ δxk−1

)
)
(dxk),

Θε
m(dx1 . . . dxm) = zm · εm−1 · δxm(dx1) · · · δxm(dxm−1)%(dxm).

Here 1ε denotes the usual indicator function if ε = −1; otherwise it is the
constant 1. The corresponding point process Pε is called Polya sum process
if ε = +1 and Polya difference process otherwise. They had been analyzed in
[8, 6]. Pε is a Papangelou process for πε. P−1 is simple.

A class of Gibbs processes for classical systems

Consider a Boltzmann kernel of the form π(µ,dx) = exp
(
− E(x|µ)

)
%(dx),

where E(x|µ) is the energy of the particle in x given the environment µ defined
by some pair potential Φ. In case that this potential is bounded from below,
continuous, symmetric and with finite range then π is a Feller kernel. If it has
additional properties implying that the corresponding L is a signed m.L.f. then
by theorem 1 there exists a unique Gibbs process P with Boltzmann kernel π. It
would be interesting to work out which class of pair potentials has these kernel
properties.

The ideal Bose and Fermi gas

Another important class of examples is obtained as follows: The underlying
phase space now is Rd with the Lebesgue measure dx. Again 0 < z < 1 is a
parameter and

g(x) =
1

(2πβ)d/2
exp

(
− ‖x‖

2

2β

)
, x ∈ Rd,

the centered Gaußian density with covariance matrix βI, I denoting the identity
and β > 0 a given parameter. Consider the kernel K(x, y) = g(x−y) and denote
by ℘ the coarsest resp. finest partition of {1, . . . , k}. Define the measures

%℘k (dx1 . . . dxk) = zk
∑
σ∈Sk

χ℘(σ)

k∏
j=1

K(xj , xσ(j)) dx1 . . . dxk,

which are in 1− 1−correspondence with the cummulant measures

Θ℘
m(dx1 . . . dxm) = zmχ℘(e) ·K(x1, x2) · · ·K(xm, x1) dx1 . . . dxm.

Here e denotes the identity permutation in Sm, and χ℘ is the character of the
corresponding irreducible representation of Sk resp. Sm. In both cases the %k
are positive, symmetric Radon measures on Xk. Thus we can construct locally
the corresponding point processes QG, G ∈ B0.

Denote the corresponding cluster measure by L℘. Its Campbell measure CL℘

is the image of Kx(d y)%(dx) under the mapping (y, x) 7−→ (x, µy + δx), where
µy is the configuration built on the tupel y. Here Kx =

∑
m≥1K

x
m is a measure

on X = ∪n≥0X
n where

Kx
m(dx2 . . . dxm) = zmχ℘(e) ·K(x, x2) · · ·K(xm, x) dx2 . . . dxm.
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This implies that the intensity measure of |L℘| is Kx(X) dx. This is a Radon
measure because

∫
X
K(x, y)K(y, z) d y = K(x, z), x, z ∈ X. In this case L℘ is

a s.m.L.f of first order and theorem 1 implies the existence of a point process
P℘ in X. We call it the immanantal process for ℘ and K. This process is a
solution of equation (6) for L℘. Both processes are simple because their cluster
measures have this property.

Fichtner (cf.[2]) considered the case where ℘ is the coarsest partition, i.e.
χ℘ ≡ 1. The corresponding point process P+ is infinitely divisible with Lévy
measure Lχ

℘

and a solution of equation (6). It is called in [2] the ideal Bose
gas. In this case %℘k

(
dx1 . . . dxk

)
= zk per

(
K(xi, xj)

)
1≤i,j≤k dx1 . . . dxk, the

permanent of the matrix in question.
When ℘ is the finest partition then χ℘ is the signum of a permutation,

and %k
(

dx1 . . . dxk
)

= zk det
(
K(xi, xj)

)
1≤i,j≤k dx1 . . . dxk. This simple point

process is called the ideal Fermion gas.
This class can be broadend considerably to immanantal point processes in

the sense of [1] in considering also all other characters χ℘ and a wider class of
kernels K over abstract σ−finite measure spaces.
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